
Algorithmica (1997) 18: 263–270 Algorithmica
© 1997 Springer-Verlag New York Inc.

A Simpler Minimum Spanning Tree
Verification Algorithm

V. King1

Abstract. The problem considered here is that of determining whether a given spanning tree is a minimal
spanning tree. In 1984 Koml´os presented an algorithm which required only a linear number of comparisons, but
nonlinear overhead to determine which comparisons to make. We simplify his algorithm and give a linear-time
procedure for its implementation in the unit cost RAM model. The procedure uses table lookup of a few simple
functions, which we precompute in time linear in the size of the tree.

Key Words. Minimum spanning tree, Verification.

1. Introduction. The problem of determining whether a given spanning tree in a
graph is a minimal spanning tree has been studied by Tarjan [6], Koml´os [4], and most
recently by Dixonet al. [1]. Tarjan’s 1979 algorithm uses path compression and gives
an almost linear running time. Koml´os’s algorithm was the first to use a linear number
of comparisons, but no linear-time method of deciding which comparisons to make has
been known. Indeed, a linear implementation of this algorithm was not thought possible,
see [4] and [1]. The only known linear-time algorithm for this problem [1] combines the
techniques of both [6] and [4], using the Koml´os algorithm to process small subproblems
via preprocessing and table lookup.

These verification methods and the method presented here use the fact that a spanning
tree is a minimum spanning tree iff the weight of each nontree edge{u, v} is at least the
weight of the heaviest edge in the path in the tree betweenu andv. These methods find
the heaviest edge in each such path for each nontree edge{u, v} in the graph, and then
compare the weight of{u, v} to it.

The “tree-path” problem of finding the heaviest edges in the paths between specified
pairs of nodes (“query paths”) arises in the recent randomized minimum spanning tree
algorithm of Kargeret al. [3]. That algorithm is the first to compute the minimum
spanning tree in linear expected time, where the only operations allowed on edge weights
are binary comparisons. The solution to the tree-path problem is the most complicated
part of these randomized algorithms, which are otherwise fairly simple.

The Komlós algorithm is simplified by use of the following observation: IfT is a
spanning tree, then there is a simpleO(n) algorithm to construct a full branching treeB
with no more than 2n edges and the following property:

Let T(x, y) denote the set of edges in the path inT from nodex to nodey, and let
B(x, y) denotes the set of edges in the path inB from leafx to leaf y.

1 Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada V8W 3P6.
val@csr.uvic.ca. This work was funded by an NSERC grant.

Received July 13, 1995; revised January 29, 1996. Communicated by Ming Y. Kao.

264 V. King

The weight of the heaviest edge in T(x, y) is the weight of the heaviest edge in B(x, y).
Therefore it suffices to use the version of the Koml´os algorithm for full branching

trees only, which is much simpler than his algorithm for general trees.
The second part of this paper is to show that this portion of Koml´os’s algorithm has

a linear-time implementation using table lookup of a few simple functions. These tables
can be constructed in time linear in the size of the tree. As in Dixonet al.’s algorithm, the
model of computation is a unit cost RAM with word size2(logn). The only operations
used on edge weights are binary comparisons.

In contrast, Dixonet al.’s algorithm separates the tree into a large subtree and many
“microtrees” of sizeO(lg lg n). Path compression is used on the large subtree. The
comparison decision tree needed to implement Koml´os’s strategy for each possible con-
figuration of microtree and possible set of query paths in the microtree is precomputed
and stored in a table. Each microtree, together with its query paths in the input spanning
tree, is encoded and then the table is used to look up the appropriate comparisons to
make.

In the next section the construction ofB is described, and the property ofB is proved.
In Section 3 we restate Koml´os’s algorithm for determining the maximum weighted edge
in each ofm paths of a full branching tree and describe its implementation.

2. Boruvka Tree Property. Let T be a spanning tree withn nodes. TreeB is the tree
of the components that are formed when the Boruvka algorithm for finding a minimum
spanning tree is applied toT .

The Boruvka algorithm, as applied to a treeT = (V, E) is as follows (see [7]):
Initially there aren blue trees consisting of the nodes ofV and no edges.

Repeat until there is one blue tree, i.e., T: For each blue tree, select a minimum weight
edge incident to it. Color all selected edges blue.

Each repetition of these instructions is referred to as a phase. We construct treeB with
nodesetW and edgesetF , by adding nodes and edges toB after each phase of the
algorithm, so that there is a 1–1 correspondence between the nodes ofB and the blue
trees created during all the phases of the algorithm.

For each nodev ∈ V of T , we create a leaff (v) of B. Let A be the set of blue trees
which are joined into one blue treet in a phasei . Then we add a new nodef (t) to W
and add{{ f (a), f (t)}|for all a ∈ A} to F . Each edge{ f (a), f (t)} is labeled with the
weight of the edge selected bya in phasei .

Note thatB is a full branching tree, i.e., it is rooted and all leaves are on the same
level and each internal node has at least two children.

SinceT is a tree,B can be constructed inO(n) time. This may be seen as follows:
The cost of executing each phase is proportional to the number of uncolored edges in
the tree during that phase. The number of uncolored edges is one less than the number
of blue trees, sinceT is a tree. Finally, the number of blue trees drops by a factor of at
least two after each phase.

For any treeT , let T(x, y) denote the set of edges in the path inT from nodex to
nodey.

A Simpler Minimum Spanning Tree Verification Algorithm 265

We prove the following theorem:

THEOREM1. Let T be any spanning tree and let B be the tree constructed as described
above. For any pair of nodes x and y in T, the weight of the heaviest edge in T(x, y)
equals the weight of the heaviest edge in B(f (x), f (y)).

PROOF. We denote the weight of an edgee byw(e). First we show that for every edge
e∈ B(f (x), f (y)), there is an edgee′ ∈ T(x, y) such thatw(e′) ≥ w(e).

Let e = {a, b} and leta be the endpoint ofe which is farther from the root. Then
a = f (t) for some blue treet which contains eitherx or y, but not both, andw(e) is the
weight of the edge selected byt .

Let e′ be the edge inT(x, y) with exactly one endpoint int . Sincet had the option of
selectinge′, w(e′) ≥ w(e), which concludes the first part of the proof.

It remains to show the following:

CLAIM 0.1. Let e be a heaviest edge in T(x, y). Then there is an edge of the same
weight in B(f (x), f (y)).

We assume for simplicity that there is a unique heaviest edge. The proof can be easily
extended to the general case.

If e is selected by a blue tree which containsx or y, then an edge inB(f (x), f (y)) is
labeled withw(e). Assume that, on the contrary,e is selected by a blue tree which does
not containx or y. This blue tree contained one endpoint ofeand thus one intermediate
node on the path fromx to y. Therefore it is incident to at least two edges on the path.
Thene is the heavier of the two, and is not selected, giving a contradiction .

3. Komlós’s Algorithm for a Full Branching Tree. For a full branching tree of
weighted edges withn nodes, andm query paths between pairs of leaves, Koml´os has
shown a simple algorithm to compute the heaviest edge on the path between each pair
with O(n log((m + n)/n)) comparisons. He breaks up each path into two half-paths
extending from the leaf up to the lowest common ancestor of the pair and finds the
heaviest edge in each half-path, as follows:

Let A(v) be the set of the paths which containv restricted to the interval [root, v].
Starting with the root, descend level by level and at each nodev encountered, the

heaviest edge in each path in the setA(v) is determined, as follows.
Let p be the parent ofv. Assume we know the heaviest edge in each path in the set

A(p). Note that the ordering of the weights of these heaviest edges can be determined
by the length of their respective paths, since for any two pathss andt in A(p), paths
includes patht or vice versa. LetA(v|p) be the set of the restrictions of each of the paths
in A(v) to the interval [p, root]. SinceA(v|p) ∈ A(p), the ordering of the weights of
the heaviest edges inA(v|p) is known. To determine the heaviest edge in each path in
A(v), we need only comparew({v, p}) to each of these weights. This can be done by
using binary search. Koml´os shows that

∑
v∈T lg|A(v)| = O(n log((m+ n)/n)), which

gives the upper bound on the number of comparisons needed to find the heaviest edge

266 V. King

in each half-path. Then the heaviest edge in each query path is determined with one
additional comparison per path.

4. Implementation of Komlós’s Algorithm. The implementation of Koml´os’s algo-
rithm requires the use of a few simple functions on words of sizeO(logn), such as a shift
by a specified number of bits, the bit-wise OR of two words,blognc, the multiplication
of two words, and a few more functions which are less conventional and will be described
below. All these functions can be precomputed inO(n) time and stored in a table where
they can be accessed in unit time. First, we present a description of the data structures we
use, followed by a high-level description of the algorithm, and then its implementation
details.

4.1. Data Structures. Letwordsizebe the size of a word, which we assume to bedlg ne
bits.

Node Labels and Edge Tags. Following a modification of the scheme of Schieber and
Vishkin [5], we label the nodes with adlg ne bit label and the edges with anO(log logn)
bit tag so that:

Label Property. Given the tag of any edgeeand the label of any node on the path from
e to any leaf,e can be located in constant time.

The labels are constructed as follows: Label the leaves 0, 1, 2,. . . , as encountered in
a depth-first traversal of the tree. Label each internal node by the label of the leaf in its
subtree which has the longest all 0’s suffix.

For each edgee, letv be its endpoint which is farther from the root and letdistance(v)
bev’s distance from the root andi (v) be the index of the rightmost 1 inv’s label. Then
thetagof e is a string oftagsize= O(lg lg n) bits given by〈distance(v), i(v)〉.

We sketch the argument (see [5]) that the Label Property holds. It is not hard to see
that the label of an ancestor of a nodew is given by a prefix of the label ofw possibly
followed by a 1 and then all 0’s. Also, nodes with the same label are connected by a path
up the tree. Hence the label ofw and the position of the rightmost 1 in an ancestor’s label
determine the ancestor’s label, while its distance from the root uniquely determines the
ancestor’s identity, among those nodes with the same label. Once the lower endpointv

of an edgee is found, thene is the unique edge fromv to its parent.

LCA. For each nodev, LCA(v) is a vector of lengthwordsizewhosei th bit is 1 iff there
is a path inA(v) whose upper endpoint is at distancei from the root. That is, there is
a query path with exactly one endpoint contained in the subtree rooted atv, such that
the lowest common ancestor of its two endpoints is at distancei from the root.LCA is
stored in a single word.

BigLists and smallLists. For any nodev, thei th longest path inA(v) will be denoted
by Ai (v). The weight of an edgee is denotedw(e). Recall that the set of paths inA(v)
restricted to [a, root] is denotedA(v|a). Call a nodev big if |A(v)| > wordsize/tagsize;
otherwisev is small.

For each big nodev, we keep an ordered list whosei th element is the tag of the
heaviest edge inAi (v), for i = 1, . . . , |A(v)|. This list is a referred to asbigList(v).

A Simpler Minimum Spanning Tree Verification Algorithm 267

We may similarly definebigList(v|a) for the set of pathsA(v|a). BigList(v) is stored in
d|A(v)|/(wordsize/tagsize)e = O(log logn) words.

For each smallv, let a be the nearest big ancestor ofv. For each suchv, we keep an
ordered list,smallList(v), whosei th element is either the tag of the heaviest edgee in
Ai (v), or if e is in the interval [a, root], then thej such thatAi (v|a) = Aj (a). That is, j
is a pointer to the entry ofbigList(a) which contains the tag fore. Once a tag appears in
a smallList, all the later entries in the list are tags. For each smallv, we keep a pointer
to the first tag in itssmallList. SmallListis stored in a single word.

4.2. The Algorithm. The goal is to generatebigList(v) or smallList(v) in time propor-
tional to log|A(v)|, so that time spent implementing Koml´os’s algorithm at each node
does not exceed the worst case number of comparisons needed at each node. We show
that if v is big, then the implementation time isO(log logn), and ifv is small, it isO(1).

Initially, A(root) = ∅. We proceed down the tree, from the parentp to each of the
childrenv. Depending on|A(v)|, we generate eitherbigList(v|p) or smallList(v|p). We
then comparew({v, p}) to the weights of these edges, by performing binary search
on the list, and insert the tag of{v, p} in the appropriate places to formbigList(v) or
smallList(v). We continue until the leaves are reached.

Let v be any node,p is its parent, anda its nearest big ancestor. To computeA(v|p):
There are two cases ifv is small:

• If p is small, we createsmallList(v|p) from smallList(p) in O(1) time.
• If p is big, we createsmallList(v|p) from LCA(v) andLCA(p) in O(1) time.

If v is big:

• If v has a big ancestor, we createbigList(v|a) from bigList(a), LCA(v), andLCA(a)
in O(lg lg n) time.
— If p 6= a, then we createbigList(v|p) from bigList(v|a) andsmallList(p) in time

O(lg lg n).
• If v does not have a big ancestor, thenbigList(v|p)← smallList(p).

To insert a tag in its appropriate places in the list:

• Let e = {v, p}, and leti be the rank ofw(e) compared with the heaviest edges of
A(v|p). Then we insert the tag fore in positionsi through|A(v)|, into our list data
structure forv, in time O(1) if v is small, orO(log logn) if v is big.

4.3. Implementation Details. The computation of theLCAs is straightforward. First,
we compute all lowest common ancestors for each pair of endpoints of them query paths
using an algorithm that runs in timeO(n+m), see [5] or [7]. We form the vectorLCA(l)
for each leafl using this information, and then form the vectorLCA(v) for a node at
distancei from the root by ORing together theLCAs of its children and setting thej th
bits to 0 for all j ≥ i .

To implement the remaining operations, we need to preprocess a few functions so that
we may do table lookup of these functions. We define asubwordto betagsizebits and
swnum= bwordsize/tagsizec, i.e.,swnumis the maximum number of subwords stored

268 V. King

in a word. Each input and each output described below are stored in single words. The
symbol· denotes “concatenated with.”

selectr takes as inputI · J, whereI andJ are two stringsr bits. It outputs a list of bits of
J which have been “selected” byI , i.e., let〈k1, k2, . . .〉 be the ordered list of indices
of those bits of I whose value is 1. Then the list is〈 jk1, jk2, . . .〉 where jki is the value
of theki th bit of J.

selectSr takes as inputI · J, whereI is a string of no more thanr bits, no more than
swnumof which are 1, andJ is a list of no more thanswnumsubwords. It outputs a
list of the subwords ofJ which have been “selected” byI , i.e., let〈k1, k2, . . .〉 be the
ordered list of indices of those bits of I whose value is 1. Then the list is〈 jk1, jk2, . . .〉
where jki is theki th subword ofJ.

weightr takes as input a string of lengthr and outputs the number of bits set to 1.
indexr takes anr bit vector with no more thanh 1’s and outputs a list of subwords

containing the indices of the 1’s in the vector.
subword1 is a constant such that fori = 1, . . . , swnum, the(i ∗ tagsize)th bit is 1 and

the remaining bits are 0 (i.e., each subword is set to 1).

For each of these functions, it is not hard to see that the preprocessing takesO(n)
time, when the size of the input is no greater than lgn+c for c a constant. A table for all
inputs of lengthr can be built by first building a table for inputs of sizer/2, looking up
the result for the two halves, and, in constant time, putting the results together to form
the entry.

For example, forindexr , if a table is built forindexr/2, then the table for input strings
of size r can be easily constructed, in a constant number of operations per entry, as
follows: Let I be the first half of the input and letJ be its second half. Addweightr/2(I)
to each subword ofindexr/2(J) by addingweightr/2(I) ∗ subword1 to it. Let L be the
string formed. Then concatenate the firstweightr/2(I) subwords ofindexr/2(I) with the
first weightr/2(J) subwords ofL.

Recall that the wordsize isdlg ne. We cannot afford to build a table forselectwordsize

andselectSwordsizewhich takes inputs of 2wordsizebits, since the table would be too large.
However, as explained above, we can compute these functions as needed in constant time
using table lookups of those functions on input sizewordsize/2 as described above.

We can now perform the operations needed for the data structures. (We omit the
subscripts of the functions below, since they can be easily inferred from the size of
their inputs.) We illustrate these operations with examples wherewordsize= 8; tagsize
= 3.

1. Determine|A(v)|:
• |A(v)| = weight(LCA(v)).
Example: ifLCA(v) = (01101110), then|A(v)| = 5.

2. Create smallList(v|p) from smallList(p):
• L ← select((LCA(p), LCA(v)).
• smallList(v|p)← selectS(L, smallList(p)).
Example: LetLCA(v) = (01001000), LCA(p) = (11000000). Let smallList(p)
be (t1, t2). Then L = select(1100000, 01001000) = (01); and smallList(v|p) =
selectS((01), (t1, t2)) = (t2).

A Simpler Minimum Spanning Tree Verification Algorithm 269

3. Create smallList(v|p) from LCA(v) and LCA(p)
• smallList(v|p)← index(select(LCA(p), LCA(v)).
Example: Let LCA(p) = (01101110) and LCA(v) = (01001000). Then
smallList(v|p) = index(select((01101110), (01001000))) = index(10100) = (1, 3).
(If bigList(p) = (t1, t2, t3, t4, t5), then the first and second entries ofsmallList(v|p)
are pointers tot1 andt3, respectively.)

4. Insert tag t into positions i to j of smallList(v|p) to form smallList(v):
• Concatenate the firsti−1 subwords ofsmallList(v|p)with thei throughj subwords

of t ∗ subword1.
Example: LetsmallList(v|p) = (1, 3) as in the example above. Thent is the tag of
{v, p}. To putt into positions 1 toj = |A(v)| = 2, we computet ∗ subword1 = t ∗
00100100 = (t, t) followed some extra 0 bits, which are discarded to get
smallList(v|p) = (t, t).

5. Create bigList(v|a) from bigList(a), LCA(v), and LCA(a):
• Let L = select(LCA(a), LCA(v)).
• PartitionL into stringsLi of swnumconsecutive bits, and store eachLi in a word.

(The last string may have fewer bits.)
• PartitionbigList(a) into words, each containingswnumsubwords. (The last may

have fewer subwords.) Letbi (a) represent thei th word ofbigList(a).
• For each stringLi , doselectS(Li, bi(a)).
• Concatenate the outputs to formbigList(v|a).
Example: LetLCA(a) = (01101110), LCA(v) = (00100101), and letbigList(a)
be (t1, t2, t3, t4, t5). Then L = (01010); L1 = (01), L2 = (01), and L3 = (0);
b1 = (t1, t2), b2 = (t3, t4), b3 = (t5). Then(t2) = selectS((01), (t1, t2)); (t4) =
selectS((01)(t3, t4)); and() = selectS(t5). ThusbigList(v|a) = (t2, t4).

6. Create bigList(v|p) from bigList(v|a) and smallList(p)where p is the parent ofv and
p 6= a:
• Let f be the first subword ofsmallList(p) which contains a tag, rather than a

pointer. Replace all subwords in positionsf or higher withsmallList(p).
(Note thatA(v|p) = A(p) since this case only arises when|A(v)| > |A(p)|, so
smallList(v|p) = smallList(p).)
Example: Usinga andv from the previous example, we havebigList(v|a) = (t2, t4).
SupposesmallList(p) = (2, t′). (Here, 2 is pointer to the second item inbigList(a)
andt ′ is the tag of some edge belowa in the tree.) ThenbigList(v|p) = (t2, t′).

7. Insert the tag of{v, p} into the appropriate positions of bigList(v|p) to form
bigList(v):
• Similar to item (2) above but must be done for each word in the list.

4.4. Analysis. Whenv is small, the cost of the overhead for performing the inser-
tions by binary search is a constant. Whenv is big, |A(v)|/(wordsize/tagsize) =
Ä(logn/log logn), the cost of the overhead isO(lg lg n). Hence the implementation
cost is O(lg|A(v)|), which is proportional to the number of comparisons needed by
the Komlós algorithm to find the heaviest edges in 2m half-paths of the tree in the
worst case. Summed over all nodes, this comes toO(n log((m+ n)/n)) as Komlós has
shown.

The only additional costs are in forming theLCAs which takeO(m + n) and in

270 V. King

processing the tables which takesO(n), and comparing the heaviest edges in each half-
path, which takesO(m).

Finally, to complete the minimum spanning tree verification algorithm, the weight of
each nontree edge is compared with the weight of the heaviest tree edge in the tree path
connecting its endpoints, for an additionalO(m) cost.

5. Conclusion and Open Problems. We have reduced Koml´os’s algorithm to the
simpler case of the full branching tree. We have also devised a novel data structure
which gives the first algorithm with linear-time overhead for its implementation.

It is still an open question whether a linear-time algorithm can be found for a pointer
machine. Such a result would imply a linear-time algorithm for a pointer machine that
can compute the lowest common ancestor. None is known for that problem which seems
easier.

Given a static tree, Schieber and Vishkin’s lowest common ancestor algorithm can
process on-line query paths in constant time for each. An open problem is to solve
the tree-path problem in constant time per query path, where the query paths are given
on-line.

The functions we use are in some sense natural. It is possible that they may be useful
for implementing other algorithms which are not known to have linear implementations
or whose implementations involve more specialized table lookup functions, as Dixonet
al.’s implementation did. (See [1] for references to some of these algorithms.)

Finally, any other applications of Theorem 1 would be of interest.

Acknowledgment. I would like to thank Phil Klein for his careful reading of the
manuscript.

References

[1] B. Dixon, M. Rauch, and R. Tarjan, Verification and sensitivity analysis of minimum spanning trees in
linear time,SIAM J. Comput., 21(6) (1992), 1184–1192.

[2] D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestors,SIAM J. Comput., 13
(1984), 338–355.

[3] D. Karger, P. N. Klein, and R. E. Tarjan, A randomized linear-time algorithm to find minimum spanning
trees,J. Assoc. Comput. Mach., 42 (1995), 321–328.

[4] J. Komlós, Linear verification for spanning trees,Combinatorica, 5 (1985), 57–65.
[5] B. Schieber and U. Vishkin, On finding lowest common ancestors: simplification and parallelization,

SIAM J. Comput., 17 (1988), 1253–1262.
[6] R. Tarjan, Applications of path compressions on balanced trees,J. Assoc. Comput. Mach., 26 (1979),

690–715.
[7] R. Tarjan,Data Structures and Network Algorithms, CBMS–NSF Regional Conference Series in Applied

Mathematics, Vol. 44, SIAM, Philadelphia, PA, 1983, p. 73.

