Algorithmica (1997) 18: 263-270 Al g O r|th m | Ca

© 1997 Springer-Verlag New York Inc.

A Simpler Minimum Spanning Tree
Verification Algorithm

V. King?

Abstract. The problem considered here is that of determining whether a given spanning tree is a minimal
spanning tree. In 1984 Komwd presented an algorithm which required only a linear number of comparisons, but
nonlinear overhead to determine which comparisons to make. We simplify his algorithm and give a linear-time
procedure for its implementation in the unit cost RAM model. The procedure uses table lookup of a few simple
functions, which we precompute in time linear in the size of the tree.

Key Words. Minimum spanning tree, Verification.

1. Introduction. The problem of determining whether a given spanning tree in a
graph is a minimal spanning tree has been studied by Tarjan [6], #&0J], and most
recently by Dixonet al. [1]. Tarjan’s 1979 algorithm uses path compression and gives
an almost linear running time. Kowd’s algorithm was the first to use a linear number

of comparisons, but no linear-time method of deciding which comparisons to make has
been known. Indeed, a linear implementation of this algorithm was not thought possible,
see [4] and [1]. The only known linear-time algorithm for this problem [1] combines the
techniques of both [6] and [4], using the Kasslalgorithm to process small subproblems
via preprocessing and table lookup.

These verification methods and the method presented here use the fact that a spanning
tree is a minimum spanning tree iff the weight of each nontree @dgsg is at least the
weight of the heaviest edge in the path in the tree betwesmdv. These methods find
the heaviest edge in each such path for each nontree{adggin the graph, and then
compare the weight dlu, v} to it.

The “tree-path” problem of finding the heaviest edges in the paths between specified
pairs of nodes (“query paths”) arises in the recent randomized minimum spanning tree
algorithm of Kargeret al. [3]. That algorithm is the first to compute the minimum
spanning tree in linear expected time, where the only operations allowed on edge weights
are binary comparisons. The solution to the tree-path problem is the most complicated
part of these randomized algorithms, which are otherwise fairly simple.

The KomBs algorithm is simplified by use of the following observationTlfis a
spanning tree, then there is a simfén) algorithm to construct a full branching tré&e
with no more than 2 edges and the following property:

Let T(x, y) denote the set of edges in the pathTirfrom nodex to nodey, and let
B(x, y) denotes the set of edges in the patiBifrom leafx to leafy.

1 Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada V8W 3P6.
val@csr.uvic.ca. This work was funded by an NSERC grant.

Received July 13, 1995; revised January 29, 1996. Communicated by Ming Y. Kao.

264 V. King

The weight of the heaviest edge itXT y) is the weight of the heaviest edge itxBy).

Therefore it suffices to use the version of the Komélgorithm for full branching
trees only, which is much simpler than his algorithm for general trees.

The second part of this paper is to show that this portion of Ksralalgorithm has
a linear-time implementation using table lookup of a few simple functions. These tables
can be constructed in time linear in the size of the tree. As in Détah’s algorithm, the
model of computation is a unit cost RAM with word si@€logn). The only operations
used on edge weights are binary comparisons.

In contrast, Dixoret al.’s algorithm separates the tree into a large subtree and many
“microtrees” of sizeO(lglgn). Path compression is used on the large subtree. The
comparison decision tree needed to implement Ka'slStrategy for each possible con-
figuration of microtree and possible set of query paths in the microtree is precomputed
and stored in a table. Each microtree, together with its query paths in the input spanning
tree, is encoded and then the table is used to look up the appropriate comparisons to
make.

In the next section the construction®fs described, and the property Bfis proved.

In Section 3 we restate Kows’s algorithm for determining the maximum weighted edge
in each ofm paths of a full branching tree and describe its implementation.

2. Boruvka Tree Property. LetT be a spanning tree withnodes. Tred is the tree
of the components that are formed when the Boruvka algorithm for finding a minimum
spanning tree is applied .

The Boruvka algorithm, as applied to a trée= (V, E) is as follows (see [7]):
Initially there aren blue trees consisting of the nodes\bfand no edges.

Repeat until there is one blue trdee., T: For each blue tregselect a minimum weight
edge incident to itColor all selected edges blue

Each repetition of these instructions is referred to as a phase. We construgtite
nodesetW and edgeseF, by adding nodes and edges Boafter each phase of the
algorithm, so that there is a 1-1 correspondence between the noBeanaf the blue
trees created during all the phases of the algorithm.

For each node € V of T, we create a leaf (v) of B. Let A be the set of blue trees
which are joined into one blue tréagn a phase. Then we add a new nodit) to W
and add{{ f (a), f (t)}|/foralla € A} to F. Each edgd f (a), f(t)} is labeled with the
weight of the edge selected hyin phasa .

Note thatB is a full branching tree, i.e., it is rooted and all leaves are on the same
level and each internal node has at least two children.

SinceT is a tree,B can be constructed i@ (n) time. This may be seen as follows:
The cost of executing each phase is proportional to the number of uncolored edges in
the tree during that phase. The number of uncolored edges is one less than the number
of blue trees, sinc@ is a tree. Finally, the number of blue trees drops by a factor of at
least two after each phase.

For any treeT, let T (x, y) denote the set of edges in the pathlifrom nodex to
nodey.

A Simpler Minimum Spanning Tree Verification Algorithm 265

We prove the following theorem:

THEOREM1. LetT be any spanning tree and let B be the tree constructed as described
above For any pair of nodes x and y in,Tthe weight of the heaviest edge ifixT y)
equals the weight of the heaviest edge irf B), f (y)).

PrROOFE We denote the weight of an edg®y w(e). First we show that for every edge
e e B(f(x), f(y)), thereis an edg€ € T (x, y) such thatw(e) > w(e).

Let e = {a, b} and leta be the endpoint oé which is farther from the root. Then
a = f(t) for some blue treéwhich contains eithex or y, but not both, andv(e) is the
weight of the edge selected by

Let€ be the edge i (X, y) with exactly one endpoint ih Sincet had the option of
selectinge’, w(€') > w(e), which concludes the first part of the proof.

It remains to show the following:

CLAaM 0.1. Let e be a heaviest edge in(X, y). Then there is an edge of the same
weightin B f (x), f(y)).

We assume for simplicity that there is a unique heaviest edge. The proof can be easily
extended to the general case.

If eis selected by a blue tree which containsr y, then an edge iB(f (x), f(y)) is
labeled withw (e). Assume that, on the contragyjs selected by a blue tree which does
not containx or y. This blue tree contained one endpoineaind thus one intermediate
node on the path from to y. Therefore it is incident to at least two edges on the path.
Theneis the heavier of the two, and is not selected, giving a contradiction. O

3. Komlbs's Algorithm for a Full Branching Tree. For a full branching tree of
weighted edges with nodes, andn query paths between pairs of leaves, Kosmhas
shown a simple algorithm to compute the heaviest edge on the path between each pair
with O(nlog((m + n)/n)) comparisons. He breaks up each path into two half-paths
extending from the leaf up to the lowest common ancestor of the pair and finds the
heaviest edge in each half-path, as follows:

Let A(v) be the set of the paths which contaimestricted to the intervat pot, v].

Starting with the root, descend level by level and at each nodecountered, the
heaviest edge in each path in the 8¢t) is determined, as follows.

Let p be the parent ob. Assume we know the heaviest edge in each path in the set
A(p). Note that the ordering of the weights of these heaviest edges can be determined
by the length of their respective paths, since for any two patsdt in A(p), paths
includes path or vice versa. LefA(v| p) be the set of the restrictions of each of the paths
in A(v) to the interval p, root]. Since A(v|p) € A(p), the ordering of the weights of
the heaviest edges iA(v|p) is known. To determine the heaviest edge in each path in
A(v), we need only compare ({v, p}) to each of these weights. This can be done by
using binary search. Kom$ shows tha} , _ 19| A(v)| = O(nlog((m+ n)/n)), which
gives the upper bound on the number of comparisons needed to find the heaviest edge

266 V. King

in each half-path. Then the heaviest edge in each query path is determined with one
additional comparison per path.

4. Implementation of Koml6s's Algorithm. The implementation of Konal’s algo-

rithm requires the use of a few simple functions on words of 8ideg n), such as a shift

by a specified number of bits, the bit-wise OR of two wordsgn], the multiplication

of two words, and a few more functions which are less conventional and will be described
below. All these functions can be precomputeditm) time and stored in a table where

they can be accessed in unit time. First, we present a description of the data structures we
use, followed by a high-level description of the algorithm, and then its implementation
details.

4.1. Data Structures Letwordsizebe the size of a word, which we assume tdlge]
bits.

Node Labels and Edge TagsFollowing a modification of the scheme of Schieber and
Vishkin [5], we label the nodes withdg n] bit label and the edges with @(log logn)
bit tag so that:

Label Property Given the tag of any edgeand the label of any node on the path from
eto any leafe can be located in constant time.

The labels are constructed as follows: Label the leaves 0,.1, 2as encountered in
a depth-first traversal of the tree. Label each internal node by the label of the leaf in its
subtree which has the longest all 0's suffix.

For each edge, letv be its endpoint which is farther from the root anddettancév)
bev’s distance from the root aridv) be the index of the rightmost 1 wis label. Then
thetag of e is a string oftagsize= O(lg Ig n) bits given by(distanc&v), i(v)).

We sketch the argument (see [5]) that the Label Property holds. It is not hard to see
that the label of an ancestor of a noglés given by a prefix of the label ab possibly
followed by a 1 and then all 0’s. Also, nodes with the same label are connected by a path
up the tree. Hence the labelwfand the position of the rightmost 1 in an ancestor’s label
determine the ancestor’s label, while its distance from the root uniquely determines the
ancestor’s identity, among those nodes with the same label. Once the lower endpoint
of an edgee is found, there is the unique edge fromto its parent.

LCA Foreach node, LCA(v) is a vector of lengthivordsizewhosei th bit is 1 iff there
is a path inA(v) whose upper endpoint is at distarickom the root. That is, there is
a query path with exactly one endpoint contained in the subtree rootedsath that
the lowest common ancestor of its two endpoints is at distafiwen the root.LCA is
stored in a single word.

BigLists and smallLists For any node, theith longest path iPA(v) will be denoted
by A (v). The weight of an edgeis denotedwv(e). Recall that the set of paths #(v)
restricted to §, root] is denotedA(v|a). Call a nodev big if |A(v)| > wordsizgtagsize
otherwisev is small

For each big node, we keep an ordered list whosth element is the tag of the
heaviest edge i\ (v), fori = 1,...,|A(v)|. This list is a referred to akigList(v).

A Simpler Minimum Spanning Tree Verification Algorithm 267

We may similarly defindigList(v|a) for the set of path#\(v|a). BigList(v) is stored in
[A(V)|/(wordsizgtagsize] = O(log logn) words.

For each smalb, leta be the nearest big ancestorwoffFor each such, we keep an
ordered listsmallListv), whoseith element is either the tag of the heaviest eddre
A (v), orif eisin the interval §, root], then thej such thatA; (v|a) = Aj(a). Thatis,]
is a pointer to the entry ddigList(a) which contains the tag fa. Once a tag appears in
asmallList all the later entries in the list are tags. For each smalle keep a pointer
to the first tag in itsmallList SmallListis stored in a single word.

4.2. The Algorithm The goal is to generatagList(v) or smallLisiv) in time propor-
tional to log A(v)|, so that time spent implementing Komsl$ algorithm at each node
does not exceed the worst case humber of comparisons needed at each node. We show
that if v is big, then the implementation time®@(log logn), and ifv is small, it isO(1).

Initially, A(root) = ¢. We proceed down the tree, from the parerb each of the
childrenv. Depending onA(v)|, we generate eithdaigList(v|p) or smallListv|p). We
then comparev({v, p}) to the weights of these edges, by performing binary search
on the list, and insert the tag ¢6, p} in the appropriate places to forbigList(v) or
smallListv). We continue until the leaves are reached.

Letv be any nodep is its parent, and its nearest big ancestor. To compuéte | p):

There are two casesiifis small:

o If pis small, we createmallLisiv|p) from smallLisip) in O(1) time.
o If pis big, we creatsmallListv|p) from LCA(v) andLCA(p) in O(1) time.

If v is big:

o If v has a big ancestor, we credigList(v|a) from bigList(a), LCA(v), andLCA(a)
in O(lglgn) time.
— If p # a, then we creatbigList(v|p) from bigList(v|a) andsmallLis{p) in time
O(glgn).
o If v does not have a big ancestor, th®gList(v|p) < smallLisip).

To insert a tag in its appropriate places in the list:

e Lete = {v, p}, and leti be the rank ofw(e) compared with the heaviest edges of
A(v|p). Then we insert the tag fain positionsi through|A(v)|, into our list data
structure for, in time O(1) if v is small, orO(log logn) if v is big.

4.3. Implementation Details The computation of theCAs is straightforward. First,
we compute all lowest common ancestors for each pair of endpointswfglery paths
using an algorithm that runs in tin@(n + m), see [5] or [7]. We form the vect&rCA(l)
for each leaf using this information, and then form the vectd€ZA(v) for a node at
distance from the root by ORing together theCAs of its children and setting thgh
bits to O for allj >i.

To implement the remaining operations, we need to preprocess a few functions so that
we may do table lookup of these functions. We defirsailbwordto betagsizebits and
swnum= |wordsizgtagsizé, i.e.,swnumis the maximum number of subwords stored

268 V. King

in a word. Each input and each output described below are stored in single words. The
symbol- denotes “concatenated with.”

select takes asinput - J, wherel andJ are two strings bits. It outputs a list of bits of
J which have been “selected” Qy i.e., let(ky, ko, .. .) be the ordered list of indices
of those bits of | whose value is 1. Then the listjg, jk,, - - .) Wherejy is the value
of thek; th bit of J.

select$ takes as input - J, wherel is a string of no more than bits, no more than
swnumof which are 1, andl is a list of no more thaswnumsubwords. It outputs a
list of the subwords ofl which have been “selected” ly i.e., let(ky, ko, .. .) be the
ordered list of indices of those bits of | whose value is 1. Then the l{gkjSjk,, - - .)
where jy is thek;th subword ofJ.

weight takes as input a string of lengthand outputs the number of bits set to 1.

index takes arr bit vector with no more tham 1's and outputs a list of subwords
containing the indices of the 1's in the vector.

subword. is a constant such that for= 1, ..., swnumthe (i x tagsizeth bit is 1 and
the remaining bits are O (i.e., each subword is set to 1).

For each of these functions, it is not hard to see that the preprocessingdakes
time, when the size of the input is no greater thamdgc for c a constant. A table for all
inputs of lengthr can be built by first building a table for inputs of sizé€, looking up
the result for the two halves, and, in constant time, putting the results together to form
the entry.

For example, fomdex, if a table is built forindex >, then the table for input strings
of sizer can be easily constructed, in a constant number of operations per entry, as
follows: Let | be the first half of the input and Itbe its second half. Addreight 2 (1)
to each subword oihdex »(J) by addingweight (1) * subword to it. Let L be the
string formed. Then concatenate the firgight »(l) subwords oindex»(1) with the
firstweight,»(J) subwords ofL.

Recall that the wordsize idg n]. We cannot afford to build a table feelecforgsize
andselectQ{orsizewhich takes inputs of@ordsizebits, since the table would be too large.
However, as explained above, we can compute these functions as needed in constant time
using table lookups of those functions on input simrdsiz¢2 as described above.

We can now perform the operations needed for the data structures. (We omit the
subscripts of the functions below, since they can be easily inferred from the size of
their inputs.) We illustrate these operations with examples wierdsize= 8; tagsize
=3.

1. DeterminelA(v)|:
e |A(V)| = weigh{LCA(V)).
Example: ifLCA(v) = (01101110, then|A(v)| = 5.
2. Create smallListv|p) from smallListp):
e L <« select(LCA(p), LCA(V)).
e smallListv|p) < select®L, smallLisip)).
Example: LetLCA(v) = (01001000, LCA(p) = (11000000. Let smallLisip)
be (t1,t2). ThenL = select110000001001000 = (01); and smallLisiv|p) =
select$(01), (t1, tp)) = (to).

A Simpler Minimum Spanning Tree Verification Algorithm 269

3. Create smallListv|p) from LCA(v) and LCAPp)
e smallListv|p) < indexselectLCA(p), LCA(V)).
Example: Let LCA(p) = (01101110 and LCA(v) = (01001009. Then
smallListv|p) = index(select(01101110, (01001000)) = index10100 = (1, 3).
(If bigList(p) = (11, to, t3, s, t5), then the first and second entriessohallListv|p)
are pointers td; andtsz, respectively.)
4. Inserttag t into positions i to j of smallLigt|p) to form smallListv):
e Concatenate the first- 1 subwords o§mallLisi(v|p) with thei throughj subwords
of t x subword..
Example: LetsmallListv|p) = (1, 3) as in the example above. Theis the tag of
{v, p}. To putt into positions 1 toj = |A(v)| = 2, we computd x subword =t *
00100100 = (t,t) followed some extra O bits, which are discarded to get
smallListv|p) = (t, 1).
5. Create bigListv|a) from bigLista), LCA(v), and LCA@a):
o LetL = selectLCA(a), LCA(V)).
e PartitionL into stringsL; of swnumconsecutive bits, and store edchin a word.
(The last string may have fewer bits.)
o PartitionbigList(a) into words, each containingwnumsubwords. (The last may
have fewer subwords.) Lét(a) represent théeth word ofbigList(a).
e For each strind ;, doselect®L;, bi(a)).
e Concatenate the outputs to foligList(v|a).
Example: LetLCA(a) = (01101110, LCA(v) = (0010010}, and letbigList(a)
be (ty, to, t3, t4, t5). ThenL = (01010; L; = (01), L, = (01), andL3 = (0);
by = (t1,t2), by = (t3,t4), bs = (t5). Then(ty) = select$(01), (ty, tz)); (ta) =
select®(01) (13, t4)); and() = select®ts). ThusbigList(via) = (i, ts).
6. Create bigListv|p) from bigLisiv|a) and smallLis{p) where p is the parent afand
p#a:
e Let f be the first subword ofmallListp) which contains a tag, rather than a
pointer. Replace all subwords in positiohr higher withsmallListp).
(Note thatA(v|p) = A(p) since this case only arises whefd(v)| > |A(p)|, SO
smallListv|p) = smallListp).)
Example: Using andv from the previous example, we habigList(v|a) = (2, ts).
SupposesmallLisip) = (2,t'). (Here, 2 is pointer to the second itemhigList(a)
andt’ is the tag of some edge belanin the tree.) ThemigList(v|p) = (t2,).
7. Insert the tag of{v, p} into the appropriate positions of bigLisfp) to form
bigList(v):
e Similar to item (2) above but must be done for each word in the list.

4.4. Analysis Whenv is small, the cost of the overhead for performing the inser-
tions by binary search is a constant. Whens big, |A(v)|/(wordsiz¢tagsize =
Q (logn/loglogn), the cost of the overhead B(lglgn). Hence the implementation
cost isO(lg|A(v)|), which is proportional to the number of comparisons needed by
the KombBs algorithm to find the heaviest edges im Balf-paths of the tree in the
worst case. Summed over all nodes, this come3tmlog((m + n)/n)) as Kombs has
shown.

The only additional costs are in forming th&€As which takeO(m + n) and in

270 V. King

processing the tables which tak®gn), and comparing the heaviest edges in each half-
path, which take®© (m).

Finally, to complete the minimum spanning tree verification algorithm, the weight of
each nontree edge is compared with the weight of the heaviest tree edge in the tree path
connecting its endpoints, for an additior@{m) cost.

5. Conclusion and Open Problems. We have reduced Koro$’s algorithm to the
simpler case of the full branching tree. We have also devised a novel data structure
which gives the first algorithm with linear-time overhead for its implementation.

It is still an open question whether a linear-time algorithm can be found for a pointer
machine. Such a result would imply a linear-time algorithm for a pointer machine that
can compute the lowest common ancestor. None is known for that problem which seems
easier.

Given a static tree, Schieber and Vishkin’s lowest common ancestor algorithm can
process on-line query paths in constant time for each. An open problem is to solve
the tree-path problem in constant time per query path, where the query paths are given
on-line.

The functions we use are in some sense natural. It is possible that they may be useful
for implementing other algorithms which are not known to have linear implementations
or whose implementations involve more specialized table lookup functions, as &ixon
al.’s implementation did. (See [1] for references to some of these algorithms.)

Finally, any other applications of Theorem 1 would be of interest.

Acknowledgment. | would like to thank Phil Klein for his careful reading of the
manuscript.

References

[1] B. Dixon, M. Rauch, and R. Tarjan, Verification and sensitivity analysis of minimum spanning trees in
linear time,SIAM J Comput, 21(6) (1992), 1184-1192.

[2] D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common anceStai,J Comput, 13
(1984), 338-355.

[3] D.Karger, P.N. Klein, and R. E. Tarjan, A randomized linear-time algorithm to find minimum spanning
treesJ. Assoc Comput Mach, 42 (1995), 321-328.

[4] J. Komlbs, Linear verification for spanning tre€3pmbinatorica5 (1985), 57—65.

[5] B. Schieber and U. Vishkin, On finding lowest common ancestors: simplification and parallelization,
SIAM J Comput, 17 (1988), 1253-1262.

[6] R. Tarjan, Applications of path compressions on balanced tdedssoc Comput Mach, 26 (1979),
690-715.

[7] R.Tarjan,Data Structures and Network Algorithi@BMS—NSF Regional Conference Series in Applied
Mathematics, Vol. 44, SIAM, Philadelphia, PA, 1983, p. 73.

